Space Ripples Reveal
Big Bang’s Smoking Gun

a photograph of Alan Guth
Alan Guth was one of the first physicists to hypothesize the existence of inflation, which explains how the universe expanded so uniformly and so quickly in the instant after the Big Bang 13.8 billion years ago. Rick Friedman for The New York Times

By Dennis Overbye

March 17, 2014

CAMBRIDGE, Mass. — One night late in 1979, an itinerant young physicist named Alan Guth, with a new son and a year’s appointment at Stanford, stayed up late with his notebook and equations, venturing far beyond the world of known physics.


He was trying to understand why there was no trace of some exotic particles that should have been created in the Big Bang. Instead he discovered what might have made the universe bang to begin with. A potential hitch in the presumed course of cosmic evolution could have infused space itself with a special energy that exerted a repulsive force, causing the universe to swell faster than the speed of light for a prodigiously violent instant.


If true, the rapid engorgement would solve paradoxes like why the heavens look uniform from pole to pole and not like a jagged, warped mess. The enormous ballooning would iron out all the wrinkles and irregularities. Those particles were not missing, but would be diluted beyond detection, like spit in the ocean.


“SPECTACULAR REALIZATION,” Dr. Guth wrote across the top of the page and drew a double box around it.


Spirals in the Sky


Gravity waves are the latest and deepest secret yet pried out of the cosmic microwaves, which were discovered accidentally by Arno Penzias and Robert Wilson at Bell Labs 50 years ago. They won the Nobel Prize.


Dr. Kovac has spent his career trying to read the secrets of these waves. He is one of four leaders of Bicep, which has operated a series of increasingly sensitive radio telescopes at the South Pole, where the thin, dry air creates ideal observing conditions. The others are Clement Pryke of the University of Minnesota, Jamie Bock of the California Institute of Technology and Dr. Kuo of Stanford.


“The South Pole is the closest you can get to space and still be on the ground,” Dr. Kovac said. He has been there 23 times, he said, wintering over in 1994. “I’ve been hooked ever since,” he said.


a photograph of a telescope
The Bicep2 telescope, in the foreground, was used to detect the faint spiraling gravity patterns — the signature of a universe being wrenched violently apart at its birth. Steffen Richter/Associated Press